Struct hyper::header::ContentLength [] [src]

pub struct ContentLength(pub u64);

Content-Length header, defined in RFC7230

When a message does not have a Transfer-Encoding header field, a Content-Length header field can provide the anticipated size, as a decimal number of octets, for a potential payload body. For messages that do include a payload body, the Content-Length field-value provides the framing information necessary for determining where the body (and message) ends. For messages that do not include a payload body, the Content-Length indicates the size of the selected representation.

ABNF

Content-Length = 1*DIGIT

Example values

Example

use hyper::header::{Headers, ContentLength};
 
let mut headers = Headers::new();
headers.set(ContentLength(1024u64));

Methods from Deref<Target=u64>

fn count_ones(self) -> u32

Returns the number of ones in the binary representation of self.

Examples

let n = 0b01001100u8;

assert_eq!(n.count_ones(), 3);

fn count_zeros(self) -> u32

Returns the number of zeros in the binary representation of self.

Examples

let n = 0b01001100u8;

assert_eq!(n.count_zeros(), 5);

fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of self.

Examples

let n = 0b0101000u16;

assert_eq!(n.leading_zeros(), 10);

fn trailing_zeros(self) -> u32

Returns the number of trailing zeros in the binary representation of self.

Examples

let n = 0b0101000u16;

assert_eq!(n.trailing_zeros(), 3);

fn rotate_left(self, n: u32) -> u64

Shifts the bits to the left by a specified amount, n, wrapping the truncated bits to the end of the resulting integer.

Examples

let n = 0x0123456789ABCDEFu64;
let m = 0x3456789ABCDEF012u64;

assert_eq!(n.rotate_left(12), m);

fn rotate_right(self, n: u32) -> u64

Shifts the bits to the right by a specified amount, n, wrapping the truncated bits to the beginning of the resulting integer.

Examples

let n = 0x0123456789ABCDEFu64;
let m = 0xDEF0123456789ABCu64;

assert_eq!(n.rotate_right(12), m);

fn swap_bytes(self) -> u64

Reverses the byte order of the integer.

Examples

let n = 0x0123456789ABCDEFu64;
let m = 0xEFCDAB8967452301u64;

assert_eq!(n.swap_bytes(), m);

fn to_be(self) -> u64

Converts self to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

Examples

let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "big") {
    assert_eq!(n.to_be(), n)
} else {
    assert_eq!(n.to_be(), n.swap_bytes())
}

fn to_le(self) -> u64

Converts self to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

Examples

let n = 0x0123456789ABCDEFu64;

if cfg!(target_endian = "little") {
    assert_eq!(n.to_le(), n)
} else {
    assert_eq!(n.to_le(), n.swap_bytes())
}

fn checked_add(self, other: u64) -> Option<u64>

Checked integer addition. Computes self + other, returning None if overflow occurred.

Examples

assert_eq!(5u16.checked_add(65530), Some(65535));
assert_eq!(6u16.checked_add(65530), None);

fn checked_sub(self, other: u64) -> Option<u64>

Checked integer subtraction. Computes self - other, returning None if underflow occurred.

Examples

assert_eq!((-127i8).checked_sub(1), Some(-128));
assert_eq!((-128i8).checked_sub(1), None);

fn checked_mul(self, other: u64) -> Option<u64>

Checked integer multiplication. Computes self * other, returning None if underflow or overflow occurred.

Examples

assert_eq!(5u8.checked_mul(51), Some(255));
assert_eq!(5u8.checked_mul(52), None);

fn checked_div(self, other: u64) -> Option<u64>

Checked integer division. Computes self / other, returning None if other == 0 or the operation results in underflow or overflow.

Examples

assert_eq!((-127i8).checked_div(-1), Some(127));
assert_eq!((-128i8).checked_div(-1), None);
assert_eq!((1i8).checked_div(0), None);

fn saturating_add(self, other: u64) -> u64

Saturating integer addition. Computes self + other, saturating at the numeric bounds instead of overflowing.

fn saturating_sub(self, other: u64) -> u64

Saturating integer subtraction. Computes self - other, saturating at the numeric bounds instead of overflowing.

fn wrapping_add(self, rhs: u64) -> u64

Wrapping (modular) addition. Computes self + other, wrapping around at the boundary of the type.

fn wrapping_sub(self, rhs: u64) -> u64

Wrapping (modular) subtraction. Computes self - other, wrapping around at the boundary of the type.

fn wrapping_mul(self, rhs: u64) -> u64

Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.

fn wrapping_div(self, rhs: u64) -> u64

Wrapping (modular) division. Computes self / other, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one divides MIN / -1 on a signed type (where MIN is the negative minimal value for the type); this is equivalent to -MIN, a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

fn wrapping_rem(self, rhs: u64) -> u64

Wrapping (modular) remainder. Computes self % other, wrapping around at the boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make x % y invalid for MIN / -1 on a signed type (where MIN is the negative minimal value). In such a case, this function returns 0.

fn wrapping_neg(self) -> u64

Wrapping (modular) negation. Computes -self, wrapping around at the boundary of the type.

The only case where such wrapping can occur is when one negates MIN on a signed type (where MIN is the negative minimal value for the type); this is a positive value that is too large to represent in the type. In such a case, this function returns MIN itself.

fn wrapping_shl(self, rhs: u32) -> u64

Panic-free bitwise shift-left; yields self << mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

fn wrapping_shr(self, rhs: u32) -> u64

Panic-free bitwise shift-left; yields self >> mask(rhs), where mask removes any high-order bits of rhs that would cause the shift to exceed the bitwidth of the type.

fn pow(self, exp: u32) -> u64

Raises self to the power of exp, using exponentiation by squaring.

Examples

assert_eq!(2i32.pow(4), 16);

fn is_power_of_two(self) -> bool

Returns true if and only if self == 2^k for some k.

fn next_power_of_two(self) -> u64

Returns the smallest power of two greater than or equal to self. Unspecified behavior on overflow.

fn checked_next_power_of_two(self) -> Option<u64>

Returns the smallest power of two greater than or equal to n. If the next power of two is greater than the type's maximum value, None is returned, otherwise the power of two is wrapped in Some.

Trait Implementations

impl Header for ContentLength

fn header_name() -> &'static str

fn parse_header(raw: &[Vec<u8>]) -> Result<ContentLength>

impl HeaderFormat for ContentLength

fn fmt_header(&self, f: &mut Formatter) -> Result

impl Display for ContentLength

fn fmt(&self, f: &mut Formatter) -> Result

impl Deref for ContentLength

type Target = u64

fn deref<'a>(&'a self) -> &'a u64

impl DerefMut for ContentLength

fn deref_mut<'a>(&'a mut self) -> &'a mut u64

Derived Implementations

impl PartialEq for ContentLength

fn eq(&self, __arg_0: &ContentLength) -> bool

fn ne(&self, __arg_0: &ContentLength) -> bool

impl Debug for ContentLength

fn fmt(&self, __arg_0: &mut Formatter) -> Result

impl Copy for ContentLength

impl Clone for ContentLength

fn clone(&self) -> ContentLength

fn clone_from(&mut self, source: &Self)