1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright 2013 Simon Sapin.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Punycode ([RFC 3492](http://tools.ietf.org/html/rfc3492)) implementation.
//!
//! Since Punycode fundamentally works on unicode code points,
//! `encode` and `decode` take and return slices and vectors of `char`.
//! `encode_str` and `decode_to_string` provide convenience wrappers
//! that convert from and to Rust’s UTF-8 based `str` and `String` types.

use std::u32;
use std::char;
use std::ascii::AsciiExt;

// Bootstring parameters for Punycode
static BASE: u32 = 36;
static T_MIN: u32 = 1;
static T_MAX: u32 = 26;
static SKEW: u32 = 38;
static DAMP: u32 = 700;
static INITIAL_BIAS: u32 = 72;
static INITIAL_N: u32 = 0x80;
static DELIMITER: char = '-';


#[inline]
fn adapt(mut delta: u32, num_points: u32, first_time: bool) -> u32 {
    delta /= if first_time { DAMP } else { 2 };
    delta += delta / num_points;
    let mut k = 0;
    while delta > ((BASE - T_MIN) * T_MAX) / 2 {
        delta /= BASE - T_MIN;
        k += BASE;
    }
    k + (((BASE - T_MIN + 1) * delta) / (delta + SKEW))
}


/// Convert Punycode to an Unicode `String`.
///
/// This is a convenience wrapper around `decode`.
#[inline]
pub fn decode_to_string(input: &str) -> Option<String> {
    decode(input).map(|chars| chars.into_iter().collect())
}


/// Convert Punycode to Unicode.
///
/// Return None on malformed input or overflow.
/// Overflow can only happen on inputs that take more than
/// 63 encoded bytes, the DNS limit on domain name labels.
pub fn decode(input: &str) -> Option<Vec<char>> {
    // Handle "basic" (ASCII) code points.
    // They are encoded as-is before the last delimiter, if any.
    let (mut output, input) = match input.rfind(DELIMITER) {
        None => (Vec::new(), input),
        Some(position) => (
            input[..position].chars().collect(),
            if position > 0 { &input[position + 1..] } else { input }
        )
    };
    let mut code_point = INITIAL_N;
    let mut bias = INITIAL_BIAS;
    let mut i = 0;
    let mut iter = input.bytes();
    loop {
        let previous_i = i;
        let mut weight = 1;
        let mut k = BASE;
        let mut byte = match iter.next() {
            None => break,
            Some(byte) => byte,
        };
        // Decode a generalized variable-length integer into delta,
        // which gets added to i.
        loop {
            let digit = match byte {
                byte @ b'0' ... b'9' => byte - b'0' + 26,
                byte @ b'A' ... b'Z' => byte - b'A',
                byte @ b'a' ... b'z' => byte - b'a',
                _ => return None
            } as u32;
            if digit > (u32::MAX - i) / weight {
                return None  // Overflow
            }
            i += digit * weight;
            let t = if k <= bias { T_MIN }
                    else if k >= bias + T_MAX { T_MAX }
                    else { k - bias };
            if digit < t {
                break
            }
            if weight > u32::MAX / (BASE - t) {
                return None  // Overflow
            }
            weight *= BASE - t;
            k += BASE;
            byte = match iter.next() {
                None => return None,  // End of input before the end of this delta
                Some(byte) => byte,
            };
        }
        let length = output.len() as u32;
        bias = adapt(i - previous_i, length + 1, previous_i == 0);
        if i / (length + 1) > u32::MAX - code_point {
            return None  // Overflow
        }
        // i was supposed to wrap around from length+1 to 0,
        // incrementing code_point each time.
        code_point += i / (length + 1);
        i %= length + 1;
        let c = match char::from_u32(code_point) {
            Some(c) => c,
            None => return None
        };
        output.insert(i as usize, c);
        i += 1;
    }
    Some(output)
}


/// Convert an Unicode `str` to Punycode.
///
/// This is a convenience wrapper around `encode`.
#[inline]
pub fn encode_str(input: &str) -> Option<String> {
    encode(&input.chars().collect::<Vec<char>>())
}


/// Convert Unicode to Punycode.
///
/// Return None on overflow, which can only happen on inputs that would take more than
/// 63 encoded bytes, the DNS limit on domain name labels.
pub fn encode(input: &[char]) -> Option<String> {
    // Handle "basic" (ASCII) code points. They are encoded as-is.
    let output_bytes = input.iter().filter_map(|&c|
        if c.is_ascii() { Some(c as u8) } else { None }
    ).collect();
    let mut output = unsafe { String::from_utf8_unchecked(output_bytes) };
    let basic_length = output.len() as u32;
    if basic_length > 0 {
        output.push_str("-")
    }
    let mut code_point = INITIAL_N;
    let mut delta = 0;
    let mut bias = INITIAL_BIAS;
    let mut processed = basic_length;
    let input_length = input.len() as u32;
    while processed < input_length {
        // All code points < code_point have been handled already.
        // Find the next larger one.
        let min_code_point = input.iter().map(|&c| c as u32)
                                  .filter(|&c| c >= code_point).min().unwrap();
        if min_code_point - code_point > (u32::MAX - delta) / (processed + 1) {
            return None  // Overflow
        }
        // Increase delta to advance the decoder’s <code_point,i> state to <min_code_point,0>
        delta += (min_code_point - code_point) * (processed + 1);
        code_point = min_code_point;
        for &c in input {
            let c = c as u32;
            if c < code_point {
                delta += 1;
                if delta == 0 {
                    return None  // Overflow
                }
            }
            if c == code_point {
                // Represent delta as a generalized variable-length integer:
                let mut q = delta;
                let mut k = BASE;
                loop {
                    let t = if k <= bias { T_MIN }
                            else if k >= bias + T_MAX { T_MAX }
                            else { k - bias };
                    if q < t {
                        break
                    }
                    let value = t + ((q - t) % (BASE - t));
                    value_to_digit(value, &mut output);
                    q = (q - t) / (BASE - t);
                    k += BASE;
                }
                value_to_digit(q, &mut output);
                bias = adapt(delta, processed + 1, processed == basic_length);
                delta = 0;
                processed += 1;
            }
        }
        delta += 1;
        code_point += 1;
    }
    Some(output)
}


#[inline]
fn value_to_digit(value: u32, output: &mut String) {
    let code_point = match value {
        0 ... 25 => value + 0x61,  // a..z
        26 ... 35 => value - 26 + 0x30,  // 0..9
        _ => panic!()
    };
    unsafe { output.as_mut_vec().push(code_point as u8) }
}