1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use ast::{self, TokenTree};
use codemap::{Span, DUMMY_SP};
use ext::base::{DummyResult, ExtCtxt, MacResult, SyntaxExtension};
use ext::base::{NormalTT, TTMacroExpander};
use ext::tt::macro_parser::{Success, Error, Failure};
use ext::tt::macro_parser::{MatchedSeq, MatchedNonterminal};
use ext::tt::macro_parser::parse;
use parse::lexer::new_tt_reader;
use parse::parser::Parser;
use parse::token::{self, special_idents, gensym_ident, NtTT, Token};
use parse::token::Token::*;
use print;
use ptr::P;

use util::small_vector::SmallVector;

use std::cell::RefCell;
use std::rc::Rc;
use std::iter::once;

struct ParserAnyMacro<'a> {
    parser: RefCell<Parser<'a>>,

    /// Span of the expansion site of the macro this parser is for
    site_span: Span,
    /// The ident of the macro we're parsing
    macro_ident: ast::Ident
}

impl<'a> ParserAnyMacro<'a> {
    /// Make sure we don't have any tokens left to parse, so we don't
    /// silently drop anything. `allow_semi` is so that "optional"
    /// semicolons at the end of normal expressions aren't complained
    /// about e.g. the semicolon in `macro_rules! kapow { () => {
    /// panic!(); } }` doesn't get picked up by .parse_expr(), but it's
    /// allowed to be there.
    fn ensure_complete_parse(&self, allow_semi: bool, context: &str) {
        let mut parser = self.parser.borrow_mut();
        if allow_semi && parser.token == token::Semi {
            panictry!(parser.bump())
        }
        if parser.token != token::Eof {
            let token_str = parser.this_token_to_string();
            let msg = format!("macro expansion ignores token `{}` and any \
                               following",
                              token_str);
            let span = parser.span;
            parser.span_err(span, &msg[..]);

            let msg = format!("caused by the macro expansion here; the usage \
                               of `{}!` is likely invalid in {} context",
                               self.macro_ident, context);
            parser.span_note(self.site_span, &msg[..]);
        }
    }
}

impl<'a> MacResult for ParserAnyMacro<'a> {
    fn make_expr(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Expr>> {
        let ret = panictry!(self.parser.borrow_mut().parse_expr());
        self.ensure_complete_parse(true, "expression");
        Some(ret)
    }
    fn make_pat(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Pat>> {
        let ret = panictry!(self.parser.borrow_mut().parse_pat());
        self.ensure_complete_parse(false, "pattern");
        Some(ret)
    }
    fn make_items(self: Box<ParserAnyMacro<'a>>) -> Option<SmallVector<P<ast::Item>>> {
        let mut ret = SmallVector::zero();
        while let Some(item) = panictry!(self.parser.borrow_mut().parse_item()) {
            ret.push(item);
        }
        self.ensure_complete_parse(false, "item");
        Some(ret)
    }

    fn make_impl_items(self: Box<ParserAnyMacro<'a>>)
                       -> Option<SmallVector<P<ast::ImplItem>>> {
        let mut ret = SmallVector::zero();
        loop {
            let mut parser = self.parser.borrow_mut();
            match parser.token {
                token::Eof => break,
                _ => ret.push(panictry!(parser.parse_impl_item()))
            }
        }
        self.ensure_complete_parse(false, "item");
        Some(ret)
    }

    fn make_stmts(self: Box<ParserAnyMacro<'a>>)
                 -> Option<SmallVector<P<ast::Stmt>>> {
        let mut ret = SmallVector::zero();
        loop {
            let mut parser = self.parser.borrow_mut();
            match parser.token {
                token::Eof => break,
                _ => match parser.parse_stmt() {
                    Ok(maybe_stmt) => match maybe_stmt {
                        Some(stmt) => ret.push(stmt),
                        None => (),
                    },
                    Err(_) => break,
                }
            }
        }
        self.ensure_complete_parse(false, "statement");
        Some(ret)
    }

    fn make_ty(self: Box<ParserAnyMacro<'a>>) -> Option<P<ast::Ty>> {
        let ret = panictry!(self.parser.borrow_mut().parse_ty());
        self.ensure_complete_parse(false, "type");
        Some(ret)
    }
}

struct MacroRulesMacroExpander {
    name: ast::Ident,
    imported_from: Option<ast::Ident>,
    lhses: Vec<TokenTree>,
    rhses: Vec<TokenTree>,
    valid: bool,
}

impl TTMacroExpander for MacroRulesMacroExpander {
    fn expand<'cx>(&self,
                   cx: &'cx mut ExtCtxt,
                   sp: Span,
                   arg: &[TokenTree])
                   -> Box<MacResult+'cx> {
        if !self.valid {
            return DummyResult::any(sp);
        }
        generic_extension(cx,
                          sp,
                          self.name,
                          self.imported_from,
                          arg,
                          &self.lhses,
                          &self.rhses)
    }
}

/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(cx: &'cx ExtCtxt,
                          sp: Span,
                          name: ast::Ident,
                          imported_from: Option<ast::Ident>,
                          arg: &[TokenTree],
                          lhses: &[TokenTree],
                          rhses: &[TokenTree])
                          -> Box<MacResult+'cx> {
    if cx.trace_macros() {
        println!("{}! {{ {} }}",
                 name,
                 print::pprust::tts_to_string(arg));
    }

    // Which arm's failure should we report? (the one furthest along)
    let mut best_fail_spot = DUMMY_SP;
    let mut best_fail_msg = "internal error: ran no matchers".to_string();

    for (i, lhs) in lhses.iter().enumerate() { // try each arm's matchers
        let lhs_tt = match *lhs {
            TokenTree::Delimited(_, ref delim) => &delim.tts[..],
            _ => cx.span_bug(sp, "malformed macro lhs")
        };

        match TokenTree::parse(cx, lhs_tt, arg) {
            Success(named_matches) => {
                let rhs = match rhses[i] {
                    // ignore delimiters
                    TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
                    _ => cx.span_bug(sp, "malformed macro rhs"),
                };
                // rhs has holes ( `$id` and `$(...)` that need filled)
                let trncbr = new_tt_reader(&cx.parse_sess().span_diagnostic,
                                           Some(named_matches),
                                           imported_from,
                                           rhs);
                let mut p = Parser::new(cx.parse_sess(), cx.cfg(), Box::new(trncbr));
                panictry!(p.check_unknown_macro_variable());
                // Let the context choose how to interpret the result.
                // Weird, but useful for X-macros.
                return Box::new(ParserAnyMacro {
                    parser: RefCell::new(p),

                    // Pass along the original expansion site and the name of the macro
                    // so we can print a useful error message if the parse of the expanded
                    // macro leaves unparsed tokens.
                    site_span: sp,
                    macro_ident: name
                })
            }
            Failure(sp, ref msg) => if sp.lo >= best_fail_spot.lo {
                best_fail_spot = sp;
                best_fail_msg = (*msg).clone();
            },
            Error(err_sp, ref msg) => {
                cx.span_fatal(err_sp.substitute_dummy(sp), &msg[..])
            }
        }
    }

     cx.span_fatal(best_fail_spot.substitute_dummy(sp), &best_fail_msg[..]);
}

// Note that macro-by-example's input is also matched against a token tree:
//                   $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!

/// Converts a `macro_rules!` invocation into a syntax extension.
pub fn compile<'cx>(cx: &'cx mut ExtCtxt,
                    def: &ast::MacroDef) -> SyntaxExtension {

    let lhs_nm =  gensym_ident("lhs");
    let rhs_nm =  gensym_ident("rhs");

    // The pattern that macro_rules matches.
    // The grammar for macro_rules! is:
    // $( $lhs:tt => $rhs:tt );+
    // ...quasiquoting this would be nice.
    // These spans won't matter, anyways
    let match_lhs_tok = MatchNt(lhs_nm, special_idents::tt, token::Plain, token::Plain);
    let match_rhs_tok = MatchNt(rhs_nm, special_idents::tt, token::Plain, token::Plain);
    let argument_gram = vec!(
        TokenTree::Sequence(DUMMY_SP,
                   Rc::new(ast::SequenceRepetition {
                       tts: vec![
                           TokenTree::Token(DUMMY_SP, match_lhs_tok),
                           TokenTree::Token(DUMMY_SP, token::FatArrow),
                           TokenTree::Token(DUMMY_SP, match_rhs_tok)],
                       separator: Some(token::Semi),
                       op: ast::OneOrMore,
                       num_captures: 2
                   })),
        //to phase into semicolon-termination instead of
        //semicolon-separation
        TokenTree::Sequence(DUMMY_SP,
                   Rc::new(ast::SequenceRepetition {
                       tts: vec![TokenTree::Token(DUMMY_SP, token::Semi)],
                       separator: None,
                       op: ast::ZeroOrMore,
                       num_captures: 0
                   })));


    // Parse the macro_rules! invocation (`none` is for no interpolations):
    let arg_reader = new_tt_reader(&cx.parse_sess().span_diagnostic,
                                   None,
                                   None,
                                   def.body.clone());

    let argument_map = match parse(cx.parse_sess(),
                                   cx.cfg(),
                                   arg_reader,
                                   &argument_gram) {
        Success(m) => m,
        Failure(sp, str) | Error(sp, str) => {
            panic!(cx.parse_sess().span_diagnostic
                     .span_fatal(sp.substitute_dummy(def.span), &str[..]));
        }
    };

    let mut valid = true;

    // Extract the arguments:
    let lhses = match **argument_map.get(&lhs_nm.name).unwrap() {
        MatchedSeq(ref s, _) => {
            s.iter().map(|m| match **m {
                MatchedNonterminal(NtTT(ref tt)) => (**tt).clone(),
                _ => cx.span_bug(def.span, "wrong-structured lhs")
            }).collect()
        }
        _ => cx.span_bug(def.span, "wrong-structured lhs")
    };

    for lhs in &lhses {
        check_lhs_nt_follows(cx, lhs, def.span);
    }

    let rhses = match **argument_map.get(&rhs_nm.name).unwrap() {
        MatchedSeq(ref s, _) => {
            s.iter().map(|m| match **m {
                MatchedNonterminal(NtTT(ref tt)) => (**tt).clone(),
                _ => cx.span_bug(def.span, "wrong-structured rhs")
            }).collect()
        }
        _ => cx.span_bug(def.span, "wrong-structured rhs")
    };

    for rhs in &rhses {
        valid &= check_rhs(cx, rhs);
    }

    let exp: Box<_> = Box::new(MacroRulesMacroExpander {
        name: def.ident,
        imported_from: def.imported_from,
        lhses: lhses,
        rhses: rhses,
        valid: valid,
    });

    NormalTT(exp, Some(def.span), def.allow_internal_unstable)
}

fn check_lhs_nt_follows(cx: &mut ExtCtxt, lhs: &TokenTree, sp: Span) {
    // lhs is going to be like TokenTree::Delimited(...), where the
    // entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
    match lhs {
        &TokenTree::Delimited(_, ref tts) => {
            check_matcher(cx, tts.tts.iter(), &Eof);
        },
        tt @ &TokenTree::Sequence(..) => {
            check_matcher(cx, Some(tt).into_iter(), &Eof);
        },
        _ => cx.span_err(sp, "invalid macro matcher; matchers must be contained \
                              in balanced delimiters or a repetition indicator")
    };
    // we don't abort on errors on rejection, the driver will do that for us
    // after parsing/expansion. we can report every error in every macro this way.
}

fn check_rhs(cx: &mut ExtCtxt, rhs: &TokenTree) -> bool {
    match *rhs {
        TokenTree::Delimited(..) => return true,
        _ => cx.span_err(rhs.get_span(), "macro rhs must be delimited")
    }
    false
}

// returns the last token that was checked, for TokenTree::Sequence. this gets used later on.
fn check_matcher<'a, I>(cx: &mut ExtCtxt, matcher: I, follow: &Token)
-> Option<(Span, Token)> where I: Iterator<Item=&'a TokenTree> {
    use print::pprust::token_to_string;

    let mut last = None;

    // 2. For each token T in M:
    let mut tokens = matcher.peekable();
    while let Some(token) = tokens.next() {
        last = match *token {
            TokenTree::Token(sp, MatchNt(ref name, ref frag_spec, _, _)) => {
                // ii. If T is a simple NT, look ahead to the next token T' in
                // M. If T' is in the set FOLLOW(NT), continue. Else; reject.
                if can_be_followed_by_any(&frag_spec.name.as_str()) {
                    continue
                } else {
                    let next_token = match tokens.peek() {
                        // If T' closes a complex NT, replace T' with F
                        Some(&&TokenTree::Token(_, CloseDelim(_))) => follow.clone(),
                        Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                        Some(&&TokenTree::Sequence(sp, _)) => {
                            // Be conservative around sequences: to be
                            // more specific, we would need to
                            // consider FIRST sets, but also the
                            // possibility that the sequence occurred
                            // zero times (in which case we need to
                            // look at the token that follows the
                            // sequence, which may itself be a sequence,
                            // and so on).
                            cx.span_err(sp,
                                        &format!("`${0}:{1}` is followed by a \
                                                  sequence repetition, which is not \
                                                  allowed for `{1}` fragments",
                                                 name, frag_spec)
                                        );
                            Eof
                        },
                        // die next iteration
                        Some(&&TokenTree::Delimited(_, ref delim)) => delim.close_token(),
                        // else, we're at the end of the macro or sequence
                        None => follow.clone()
                    };

                    let tok = if let TokenTree::Token(_, ref tok) = *token {
                        tok
                    } else {
                        unreachable!()
                    };

                    // If T' is in the set FOLLOW(NT), continue. Else, reject.
                    match (&next_token, is_in_follow(cx, &next_token, &frag_spec.name.as_str())) {
                        (_, Err(msg)) => {
                            cx.span_err(sp, &msg);
                            continue
                        }
                        (&Eof, _) => return Some((sp, tok.clone())),
                        (_, Ok(true)) => continue,
                        (next, Ok(false)) => {
                            cx.span_err(sp, &format!("`${0}:{1}` is followed by `{2}`, which \
                                                      is not allowed for `{1}` fragments",
                                                     name, frag_spec,
                                                     token_to_string(next)));
                            continue
                        },
                    }
                }
            },
            TokenTree::Sequence(sp, ref seq) => {
                // iii. Else, T is a complex NT.
                match seq.separator {
                    // If T has the form $(...)U+ or $(...)U* for some token U,
                    // run the algorithm on the contents with F set to U. If it
                    // accepts, continue, else, reject.
                    Some(ref u) => {
                        let last = check_matcher(cx, seq.tts.iter(), u);
                        match last {
                            // Since the delimiter isn't required after the last
                            // repetition, make sure that the *next* token is
                            // sane. This doesn't actually compute the FIRST of
                            // the rest of the matcher yet, it only considers
                            // single tokens and simple NTs. This is imprecise,
                            // but conservatively correct.
                            Some((span, tok)) => {
                                let fol = match tokens.peek() {
                                    Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                                    Some(&&TokenTree::Delimited(_, ref delim)) =>
                                        delim.close_token(),
                                    Some(_) => {
                                        cx.span_err(sp, "sequence repetition followed by \
                                                another sequence repetition, which is not allowed");
                                        Eof
                                    },
                                    None => Eof
                                };
                                check_matcher(cx, once(&TokenTree::Token(span, tok.clone())),
                                              &fol)
                            },
                            None => last,
                        }
                    },
                    // If T has the form $(...)+ or $(...)*, run the algorithm
                    // on the contents with F set to the token following the
                    // sequence. If it accepts, continue, else, reject.
                    None => {
                        let fol = match tokens.peek() {
                            Some(&&TokenTree::Token(_, ref tok)) => tok.clone(),
                            Some(&&TokenTree::Delimited(_, ref delim)) => delim.close_token(),
                            Some(_) => {
                                cx.span_err(sp, "sequence repetition followed by another \
                                             sequence repetition, which is not allowed");
                                Eof
                            },
                            None => Eof
                        };
                        check_matcher(cx, seq.tts.iter(), &fol)
                    }
                }
            },
            TokenTree::Token(..) => {
                // i. If T is not an NT, continue.
                continue
            },
            TokenTree::Delimited(_, ref tts) => {
                // if we don't pass in that close delimiter, we'll incorrectly consider the matcher
                // `{ $foo:ty }` as having a follow that isn't `RBrace`
                check_matcher(cx, tts.tts.iter(), &tts.close_token())
            }
        }
    }
    last
}

/// True if a fragment of type `frag` can be followed by any sort of
/// token.  We use this (among other things) as a useful approximation
/// for when `frag` can be followed by a repetition like `$(...)*` or
/// `$(...)+`. In general, these can be a bit tricky to reason about,
/// so we adopt a conservative position that says that any fragment
/// specifier which consumes at most one token tree can be followed by
/// a fragment specifier (indeed, these fragments can be followed by
/// ANYTHING without fear of future compatibility hazards).
fn can_be_followed_by_any(frag: &str) -> bool {
    match frag {
        "item" |  // always terminated by `}` or `;`
        "block" | // exactly one token tree
        "ident" | // exactly one token tree
        "meta" |  // exactly one token tree
        "tt" =>    // exactly one token tree
            true,

        _ =>
            false,
    }
}

/// True if `frag` can legally be followed by the token `tok`. For
/// fragments that can consume an unbounded numbe of tokens, `tok`
/// must be within a well-defined follow set. This is intended to
/// guarantee future compatibility: for example, without this rule, if
/// we expanded `expr` to include a new binary operator, we might
/// break macros that were relying on that binary operator as a
/// separator.
fn is_in_follow(_: &ExtCtxt, tok: &Token, frag: &str) -> Result<bool, String> {
    if let &CloseDelim(_) = tok {
        // closing a token tree can never be matched by any fragment;
        // iow, we always require that `(` and `)` match, etc.
        Ok(true)
    } else {
        match frag {
            "item" => {
                // since items *must* be followed by either a `;` or a `}`, we can
                // accept anything after them
                Ok(true)
            },
            "block" => {
                // anything can follow block, the braces provide an easy boundary to
                // maintain
                Ok(true)
            },
            "stmt" | "expr"  => {
                match *tok {
                    FatArrow | Comma | Semi => Ok(true),
                    _ => Ok(false)
                }
            },
            "pat" => {
                match *tok {
                    FatArrow | Comma | Eq => Ok(true),
                    Ident(i, _) if i.name.as_str() == "if" || i.name.as_str() == "in" => Ok(true),
                    _ => Ok(false)
                }
            },
            "path" | "ty" => {
                match *tok {
                    Comma | FatArrow | Colon | Eq | Gt | Semi => Ok(true),
                    Ident(i, _) if i.name.as_str() == "as" => Ok(true),
                    _ => Ok(false)
                }
            },
            "ident" => {
                // being a single token, idents are harmless
                Ok(true)
            },
            "meta" | "tt" => {
                // being either a single token or a delimited sequence, tt is
                // harmless
                Ok(true)
            },
            _ => Err(format!("invalid fragment specifier `{}`", frag))
        }
    }
}