1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A collection of numeric types and traits for Rust. //! //! This includes new types for big integers, rationals, and complex numbers, //! new traits for generic programming on numeric properties like `Integer`, //! and generic range iterators. //! //! ## Example //! //! This example uses the BigRational type and [Newton's method][newt] to //! approximate a square root to arbitrary precision: //! //! ``` //! extern crate num; //! # #[cfg(all(feature = "bigint", feature="rational"))] //! # pub mod test { //! //! use num::FromPrimitive; //! use num::bigint::BigInt; //! use num::rational::{Ratio, BigRational}; //! //! fn approx_sqrt(number: u64, iterations: usize) -> BigRational { //! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap()); //! let mut approx = start.clone(); //! //! for _ in 0..iterations { //! approx = (&approx + (&start / &approx)) / //! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap()); //! } //! //! approx //! } //! # } //! # #[cfg(not(all(feature = "bigint", feature="rational")))] //! # fn approx_sqrt(n: u64, _: usize) -> u64 { n } //! //! fn main() { //! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416 //! } //! //! ``` //! //! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method #![doc(html_logo_url = "http://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "http://rust-num.github.io/num/favicon.ico", html_root_url = "http://rust-num.github.io/num/", html_playground_url = "http://play.rust-lang.org/")] #[cfg(feature = "rustc-serialize")] extern crate rustc_serialize; #[cfg(feature = "rand")] extern crate rand; #[cfg(feature = "bigint")] pub use bigint::{BigInt, BigUint}; #[cfg(feature = "rational")] pub use rational::Rational; #[cfg(all(feature = "rational", feature="bigint"))] pub use rational::BigRational; #[cfg(feature = "complex")] pub use complex::Complex; pub use integer::Integer; pub use iter::{range, range_inclusive, range_step, range_step_inclusive}; pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded, Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast}; #[cfg(test)] use std::hash; use std::ops::{Mul}; #[cfg(feature = "bigint")] pub mod bigint; pub mod complex; pub mod integer; pub mod iter; pub mod traits; #[cfg(feature = "rational")] pub mod rational; /// Returns the additive identity, `0`. #[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() } /// Returns the multiplicative identity, `1`. #[inline(always)] pub fn one<T: One>() -> T { One::one() } /// Computes the absolute value. /// /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN` /// /// For signed integers, `::MIN` will be returned if the number is `::MIN`. #[inline(always)] pub fn abs<T: Signed>(value: T) -> T { value.abs() } /// The positive difference of two numbers. /// /// Returns zero if `x` is less than or equal to `y`, otherwise the difference /// between `x` and `y` is returned. #[inline(always)] pub fn abs_sub<T: Signed>(x: T, y: T) -> T { x.abs_sub(&y) } /// Returns the sign of the number. /// /// For `f32` and `f64`: /// /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For signed integers: /// /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative #[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() } /// Raises a value to the power of exp, using exponentiation by squaring. /// /// # Example /// /// ```rust /// use num; /// /// assert_eq!(num::pow(2i8, 4), 16); /// assert_eq!(num::pow(6u8, 3), 216); /// ``` #[inline] pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T { if exp == 1 { base } else { let mut acc = one::<T>(); while exp > 0 { if (exp & 1) == 1 { acc = acc * base.clone(); } // avoid overflow if we won't need it if exp > 1 { base = base.clone() * base; } exp = exp >> 1; } acc } } #[cfg(test)] fn hash<T: hash::Hash>(x: &T) -> u64 { use std::hash::Hasher; let mut hasher = hash::SipHasher::new(); x.hash(&mut hasher); hasher.finish() }