1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*!
This crate defines two functions, `memchr` and `memrchr`, which expose a safe interface
to the corresponding functions in `libc`.
*/

#![deny(missing_docs)]
#![allow(unused_imports)]

extern crate libc;

use libc::c_void;
use libc::{c_int, size_t};

/// A safe interface to `memchr`.
///
/// Returns the index corresponding to the first occurrence of `needle` in
/// `haystack`, or `None` if one is not found.
///
/// memchr reduces to super-optimized machine code at around an order of
/// magnitude faster than `haystack.iter().position(|&b| b == needle)`.
/// (See benchmarks.)
///
/// # Example
///
/// This shows how to find the first position of a byte in a byte string.
///
/// ```rust
/// use memchr::memchr;
///
/// let haystack = b"the quick brown fox";
/// assert_eq!(memchr(b'k', haystack), Some(8));
/// ```
pub fn memchr(needle: u8, haystack: &[u8]) -> Option<usize> {
    // libc memchr
    #[cfg(any(not(target_os = "windows"),
              not(any(target_pointer_width = "32",
                      target_pointer_width = "64"))))]
    fn memchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
        use libc::memchr as libc_memchr;

        let p = unsafe {
            libc_memchr(
                haystack.as_ptr() as *const c_void,
                needle as c_int,
                haystack.len() as size_t)
        };
        if p.is_null() {
            None
        } else {
            Some(p as usize - (haystack.as_ptr() as usize))
        }
    }

    // use fallback on windows, since it's faster
    #[cfg(all(target_os = "windows",
              any(target_pointer_width = "32",
                  target_pointer_width = "64")))]
    fn memchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
        fallback::memchr(needle, haystack)
    }

    memchr_specific(needle, haystack)
}

/// A safe interface to `memrchr`.
///
/// Returns the index corresponding to the last occurrence of `needle` in
/// `haystack`, or `None` if one is not found.
///
/// # Example
///
/// This shows how to find the last position of a byte in a byte string.
///
/// ```rust
/// use memchr::memrchr;
///
/// let haystack = b"the quick brown fox";
/// assert_eq!(memrchr(b'o', haystack), Some(17));
/// ```
pub fn memrchr(needle: u8, haystack: &[u8]) -> Option<usize> {

    #[cfg(target_os = "linux")]
    fn memrchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
        // GNU's memrchr() will - unlike memchr() - error if haystack is empty.
        if haystack.is_empty() {return None}
        let p = unsafe {
            ffi::memrchr(
                haystack.as_ptr() as *const c_void,
                needle as c_int,
                haystack.len() as size_t)
        };
        if p.is_null() {
            None
        } else {
            Some(p as usize - (haystack.as_ptr() as usize))
        }
    }

    #[cfg(all(not(target_os = "linux"),
              any(target_pointer_width = "32", target_pointer_width = "64")))]
    fn memrchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
        fallback::memrchr(needle, haystack)
    }

    // For the rare case of neither 32 bit nor 64-bit platform.
    #[cfg(all(not(target_os = "linux"),
              not(target_pointer_width = "32"),
              not(target_pointer_width = "64")))]
    fn memrchr_specific(needle: u8, haystack: &[u8]) -> Option<usize> {
        haystack.iter().rposition(|&b| b == needle)
    }

    memrchr_specific(needle, haystack)
}

#[allow(dead_code)]
#[cfg(all(not(target_os = "linux"),
          any(target_pointer_width = "32", target_pointer_width = "64")))]
mod fallback {
    use std::cmp;

    const LO_U64: u64 = 0x0101010101010101;
    const HI_U64: u64 = 0x8080808080808080;

    // use truncation
    const LO_USIZE: usize = LO_U64 as usize;
    const HI_USIZE: usize = HI_U64 as usize;

    #[cfg(target_pointer_width = "32")]
    const USIZE_BYTES: usize = 4;
    #[cfg(target_pointer_width = "64")]
    const USIZE_BYTES: usize = 8;

    /// Return `true` if `x` contains any zero byte.
    ///
    /// From *Matters Computational*, J. Arndt
    ///
    /// "The idea is to subtract one from each of the bytes and then look for
    /// bytes where the borrow propagated all the way to the most significant
    /// bit."
    #[inline]
    fn contains_zero_byte(x: usize) -> bool {
        x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0
    }

    #[cfg(target_pointer_width = "32")]
    #[inline]
    fn repeat_byte(b: u8) -> usize {
        let mut rep = (b as usize) << 8 | b as usize;
        rep = rep << 16 | rep;
        rep
    }

    #[cfg(target_pointer_width = "64")]
    #[inline]
    fn repeat_byte(b: u8) -> usize {
        let mut rep = (b as usize) << 8 | b as usize;
        rep = rep << 16 | rep;
        rep = rep << 32 | rep;
        rep
    }

    /// Return the first index matching the byte `a` in `text`.
    pub fn memchr(x: u8, text: &[u8]) -> Option<usize> {
        // Scan for a single byte value by reading two `usize` words at a time.
        //
        // Split `text` in three parts
        // - unaligned inital part, before the first word aligned address in text
        // - body, scan by 2 words at a time
        // - the last remaining part, < 2 word size
        let len = text.len();
        let ptr = text.as_ptr();

        // search up to an aligned boundary
        let align = (ptr as usize) & (USIZE_BYTES - 1);
        let mut offset;
        if align > 0 {
            offset = cmp::min(USIZE_BYTES - align, len);
            if let Some(index) = text[..offset].iter().position(|elt| *elt == x) {
                return Some(index);
            }
        } else {
            offset = 0;
        }

        // search the body of the text
        let repeated_x = repeat_byte(x);

        if len >= 2 * USIZE_BYTES {
            while offset <= len - 2 * USIZE_BYTES {
                unsafe {
                    let u = *(ptr.offset(offset as isize) as *const usize);
                    let v = *(ptr.offset((offset + USIZE_BYTES) as isize) as *const usize);

                    // break if there is a matching byte
                    let zu = contains_zero_byte(u ^ repeated_x);
                    let zv = contains_zero_byte(v ^ repeated_x);
                    if zu || zv {
                        break;
                    }
                }
                offset += USIZE_BYTES * 2;
            }
        }

        // find the byte after the point the body loop stopped
        text[offset..].iter().position(|elt| *elt == x).map(|i| offset + i)
    }

    /// Return the last index matching the byte `a` in `text`.
    pub fn memrchr(x: u8, text: &[u8]) -> Option<usize> {
        // Scan for a single byte value by reading two `usize` words at a time.
        //
        // Split `text` in three parts
        // - unaligned tail, after the last word aligned address in text
        // - body, scan by 2 words at a time
        // - the first remaining bytes, < 2 word size
        let len = text.len();
        let ptr = text.as_ptr();

        // search to an aligned boundary
        let end_align = (ptr as usize + len) & (USIZE_BYTES - 1);
        let mut offset;
        if end_align > 0 {
            offset = len - cmp::min(USIZE_BYTES - end_align, len);
            if let Some(index) = text[offset..].iter().rposition(|elt| *elt == x) {
                return Some(offset + index);
            }
        } else {
            offset = len;
        }

        // search the body of the text
        let repeated_x = repeat_byte(x);

        while offset >= 2 * USIZE_BYTES {
            unsafe {
                let u = *(ptr.offset(offset as isize - 2 * USIZE_BYTES as isize) as *const usize);
                let v = *(ptr.offset(offset as isize - USIZE_BYTES as isize) as *const usize);

                // break if there is a matching byte
                let zu = contains_zero_byte(u ^ repeated_x);
                let zv = contains_zero_byte(v ^ repeated_x);
                if zu || zv {
                    break;
                }
            }
            offset -= 2 * USIZE_BYTES;
        }

        // find the byte before the point the body loop stopped
        text[..offset].iter().rposition(|elt| *elt == x)
    }
}

#[cfg(target_os = "linux")]
mod ffi {
    use libc::c_void;
    use libc::{c_int, size_t};
    extern {
        pub fn memrchr(cx: *const c_void, c: c_int, n: size_t) -> *mut c_void;
    }
}

#[cfg(test)]
mod tests {
    extern crate quickcheck;

    use super::{memchr, memrchr};

    #[test]
    fn matches_one() {
        assert_eq!(Some(0), memchr(b'a', b"a"));
    }

    #[test]
    fn matches_begin() {
        assert_eq!(Some(0), memchr(b'a', b"aaaa"));
    }

    #[test]
    fn matches_end() {
        assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
    }

    #[test]
    fn matches_nul() {
        assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
    }

    #[test]
    fn matches_past_nul() {
        assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
    }

    #[test]
    fn no_match_empty() {
        assert_eq!(None, memchr(b'a', b""));
    }

    #[test]
    fn no_match() {
        assert_eq!(None, memchr(b'a', b"xyz"));
    }

    #[test]
    fn qc_never_fail() {
        fn prop(needle: u8, haystack: Vec<u8>) -> bool {
            memchr(needle, &haystack); true
        }
        quickcheck::quickcheck(prop as fn(u8, Vec<u8>) -> bool);
    }

    #[test]
    fn matches_one_reversed() {
        assert_eq!(Some(0), memrchr(b'a', b"a"));
    }

    #[test]
    fn matches_begin_reversed() {
        assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
    }

    #[test]
    fn matches_end_reversed() {
        assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
    }

    #[test]
    fn matches_nul_reversed() {
        assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
    }

    #[test]
    fn matches_past_nul_reversed() {
        assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
    }

    #[test]
    fn no_match_empty_reversed() {
        assert_eq!(None, memrchr(b'a', b""));
    }

    #[test]
    fn no_match_reversed() {
        assert_eq!(None, memrchr(b'a', b"xyz"));
    }

    #[test]
    fn qc_never_fail_reversed() {
        fn prop(needle: u8, haystack: Vec<u8>) -> bool {
            memrchr(needle, &haystack); true
        }
        quickcheck::quickcheck(prop as fn(u8, Vec<u8>) -> bool);
    }

    #[test]
    fn qc_correct_memchr() {
        fn prop(v: Vec<u8>, offset: u8) -> bool {
            // test all pointer alignments
            let uoffset = (offset & 0xF) as usize;
            let data = if uoffset <= v.len() {
                &v[uoffset..]
            } else {
                &v[..]
            };
            for byte in 0..256u32 {
                let byte = byte as u8;
                if memchr(byte, &data) != data.iter().position(|elt| *elt == byte) {
                    return false;
                }
            }
            true
        }
        quickcheck::quickcheck(prop as fn(Vec<u8>, u8) -> bool);
    }

    #[test]
    fn qc_correct_memrchr() {
        fn prop(v: Vec<u8>, offset: u8) -> bool {
            // test all pointer alignments
            let uoffset = (offset & 0xF) as usize;
            let data = if uoffset <= v.len() {
                &v[uoffset..]
            } else {
                &v[..]
            };
            for byte in 0..256u32 {
                let byte = byte as u8;
                if memrchr(byte, &data) != data.iter().rposition(|elt| *elt == byte) {
                    return false;
                }
            }
            true
        }
        quickcheck::quickcheck(prop as fn(Vec<u8>, u8) -> bool);
    }
}