1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//! A module exposing utilities for encoding and decoding Huffman-coded octet
//! strings, under the Huffman code defined by HPACK.
//! (HPACK-draft-10, Appendix B)

use std::collections::HashMap;

/// Represents a symbol that can be inserted into a Huffman-encoded octet
/// string.
enum HuffmanCodeSymbol {
    /// Any octet is a valid symbol
    Symbol(u8),
    /// A special symbol represents the end of the string
    EndOfString,
}

impl HuffmanCodeSymbol {
    pub fn new(symbol: usize) -> HuffmanCodeSymbol {
        if symbol == 256 {
            HuffmanCodeSymbol::EndOfString
        } else {
            // It is safe to downcast since now we know that the value
            // is in the half-open interval [0, 256)
            HuffmanCodeSymbol::Symbol(symbol as u8)
        }
    }
}

/// Represents the error variants that the `HuffmanDecoder` can return.
#[derive(PartialEq)]
#[derive(Copy)]
#[derive(Clone)]
#[derive(Debug)]
pub enum HuffmanDecoderError {
    /// Any padding strictly larger than 7 bits MUST be interpreted as an error
    PaddingTooLarge,
    /// Any padding that does not correspond to the most significant bits of
    /// EOS MUST be interpreted as an error.
    InvalidPadding,
    /// If EOS is ever found in the string, it causes an error.
    EOSInString,
}

/// The type that represents the result of the `decode` method of the
/// `HuffmanDecoder`.
pub type HuffmanDecoderResult = Result<Vec<u8>, HuffmanDecoderError>;

/// A simple implementation of a Huffman code decoder.
pub struct HuffmanDecoder {
    table: HashMap<u8, HashMap<u32, HuffmanCodeSymbol>>,
    // The representation of the EOS: the left-aligned code representation and
    // the actual length of the codepoint, as a tuple.
    eos_codepoint: (u32, u8),
}

impl HuffmanDecoder {
    /// Constructs a new `HuffmanDecoder` using the given table of
    /// (code point, code length) tuples to represent the Huffman code.
    fn from_table(table: &[(u32, u8)]) -> HuffmanDecoder {
        if table.len() != 257 {
            panic!("Invalid Huffman code table. It must define exactly 257 symbols.");
        }

        let mut decoder_table: HashMap<u8, HashMap<u32, HuffmanCodeSymbol>> =
            HashMap::new();
        let mut eos_codepoint: Option<(u32, u8)> = None;

        for (symbol, &(code, code_len)) in table.iter().enumerate() {
            if !decoder_table.contains_key(&code_len) {
                decoder_table.insert(code_len, HashMap::new());
            }
            let subtable = decoder_table.get_mut(&code_len).unwrap();
            let huff_symbol = HuffmanCodeSymbol::new(symbol);
            match huff_symbol {
                HuffmanCodeSymbol::EndOfString => {
                    // We also remember the code point of the EOS for easier
                    // reference later on.
                    eos_codepoint = Some((code, code_len));
                },
                _ => {}
            };
            subtable.insert(code, huff_symbol);
        }

        HuffmanDecoder {
            table: decoder_table,
            eos_codepoint: eos_codepoint.unwrap(),
        }
    }

    /// Constructs a new HuffmanDecoder with the default Huffman code table, as
    /// defined in the HPACK-draft-10, Appendix B.
    pub fn new() -> HuffmanDecoder {
        HuffmanDecoder::from_table(HUFFMAN_CODE_TABLE)
    }

    /// Decodes the buffer `buf` into a newly allocated `Vec`.
    ///
    /// It assumes that the entire buffer should be considered as the Huffman
    /// encoding of an octet string and handles the padding rules
    /// accordingly.
    pub fn decode(&mut self, buf: &[u8]) -> HuffmanDecoderResult {
        let mut current: u32 = 0;
        let mut current_len: u8 = 0;
        let mut result: Vec<u8> = Vec::new();

        for b in BitIterator::new(buf.iter()) {
            current_len += 1;
            current <<= 1;
            if b {
                current |= 1;
            }

            if self.table.contains_key(&current_len) {
                let length_table = self.table.get(&current_len).unwrap();
                if length_table.contains_key(&current) {
                    let decoded_symbol = match length_table.get(&current).unwrap() {
                        &HuffmanCodeSymbol::Symbol(symbol) => symbol,
                        &HuffmanCodeSymbol::EndOfString => {
                            // If the EOS symbol is detected within the stream,
                            // we need to consider it an error.
                            return Err(HuffmanDecoderError::EOSInString);
                        },
                    };
                    result.push(decoded_symbol);
                    current = 0;
                    current_len = 0;
                }
            }
        }

        // Now we need to verify that the padding is correct.
        // The spec mandates that the padding must not be strictly longer than
        // 7 bits and that it must represent the most significant bits of the
        // EOS symbol's code.

        // First: the check for the length of the padding
        if current_len > 7 {
            return Err(HuffmanDecoderError::PaddingTooLarge)
        }

        // Second: the padding corresponds to the most-significant bits of the
        // EOS symbol.
        // Align both of them to have their most significant bit as the most
        // significant bit of a u32.
        let right_align_current = if current_len == 0 {
            0
        } else {
            current << (32 - current_len)
        };
        let right_align_eos = self.eos_codepoint.0 << (32 - self.eos_codepoint.1);
        // Now take only the necessary amount of most significant bit of EOS.
        // The mask defines a bit pattern of `current_len` leading set bits,
        // followed by the rest of the bits 0.
        let mask = if current_len == 0 {
            0
        } else {
            ((1 << current_len) - 1) << (32 - current_len)
        };
        // The mask is now used to strip the unwanted bits of the EOS
        let eos_mask = right_align_eos & mask;

        if eos_mask != right_align_current {
            return Err(HuffmanDecoderError::InvalidPadding);
        }

        Ok(result)
    }
}

/// A helper struct that represents an iterator over individual bits of all
/// bytes found in a wrapped Iterator over bytes.
/// Bits are represented as `bool`s, where `true` corresponds to a set bit and
/// `false` to a 0 bit.
///
/// Bits are yielded in order of significance, starting from the
/// most-significant bit.
struct BitIterator<'a, I: Iterator> {
    buffer_iterator: I,
    current_byte: Option<&'a u8>,
    /// The bit-position within the current byte
    pos: u8,
}

impl<'a, I: Iterator> BitIterator<'a, I>
        where I: Iterator<Item=&'a u8> {
    pub fn new(iterator: I) -> BitIterator<'a, I> {
        BitIterator::<'a, I> {
            buffer_iterator: iterator,
            current_byte: None,
            pos: 7,
        }
    }
}

impl<'a, I> Iterator for BitIterator<'a, I>
        where I: Iterator<Item=&'a u8> {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        if self.current_byte.is_none() {
            self.current_byte = self.buffer_iterator.next();
            self.pos = 7;
        }

        // If we still have `None`, it means the buffer has been exhausted
        if self.current_byte.is_none() {
            return None;
        }

        let b = *self.current_byte.unwrap();

        let is_set = (b & (1 << self.pos)) == (1 << self.pos);
        if self.pos == 0 {
            // We have exhausted all bits from the current byte -- try to get
            // a new one on the next pass.
            self.current_byte = None;
        } else {
            // Still more bits left here...
            self.pos -= 1;
        }

        Some(is_set)
    }
}

static HUFFMAN_CODE_TABLE: &'static [(u32, u8)] = &[
    (0x1ff8, 13),
    (0x7fffd8, 23),
    (0xfffffe2, 28),
    (0xfffffe3, 28),
    (0xfffffe4, 28),
    (0xfffffe5, 28),
    (0xfffffe6, 28),
    (0xfffffe7, 28),
    (0xfffffe8, 28),
    (0xffffea, 24),
    (0x3ffffffc, 30),
    (0xfffffe9, 28),
    (0xfffffea, 28),
    (0x3ffffffd, 30),
    (0xfffffeb, 28),
    (0xfffffec, 28),
    (0xfffffed, 28),
    (0xfffffee, 28),
    (0xfffffef, 28),
    (0xffffff0, 28),
    (0xffffff1, 28),
    (0xffffff2, 28),
    (0x3ffffffe, 30),
    (0xffffff3, 28),
    (0xffffff4, 28),
    (0xffffff5, 28),
    (0xffffff6, 28),
    (0xffffff7, 28),
    (0xffffff8, 28),
    (0xffffff9, 28),
    (0xffffffa, 28),
    (0xffffffb, 28),
    (0x14, 6),
    (0x3f8, 10),
    (0x3f9, 10),
    (0xffa, 12),
    (0x1ff9, 13),
    (0x15, 6),
    (0xf8, 8),
    (0x7fa, 11),
    (0x3fa, 10),
    (0x3fb, 10),
    (0xf9, 8),
    (0x7fb, 11),
    (0xfa, 8),
    (0x16, 6),
    (0x17, 6),
    (0x18, 6),
    (0x0, 5),
    (0x1, 5),
    (0x2, 5),
    (0x19, 6),
    (0x1a, 6),
    (0x1b, 6),
    (0x1c, 6),
    (0x1d, 6),
    (0x1e, 6),
    (0x1f, 6),
    (0x5c, 7),
    (0xfb, 8),
    (0x7ffc, 15),
    (0x20, 6),
    (0xffb, 12),
    (0x3fc, 10),
    (0x1ffa, 13),
    (0x21, 6),
    (0x5d, 7),
    (0x5e, 7),
    (0x5f, 7),
    (0x60, 7),
    (0x61, 7),
    (0x62, 7),
    (0x63, 7),
    (0x64, 7),
    (0x65, 7),
    (0x66, 7),
    (0x67, 7),
    (0x68, 7),
    (0x69, 7),
    (0x6a, 7),
    (0x6b, 7),
    (0x6c, 7),
    (0x6d, 7),
    (0x6e, 7),
    (0x6f, 7),
    (0x70, 7),
    (0x71, 7),
    (0x72, 7),
    (0xfc, 8),
    (0x73, 7),
    (0xfd, 8),
    (0x1ffb, 13),
    (0x7fff0, 19),
    (0x1ffc, 13),
    (0x3ffc, 14),
    (0x22, 6),
    (0x7ffd, 15),
    (0x3, 5),
    (0x23, 6),
    (0x4, 5),
    (0x24, 6),
    (0x5, 5),
    (0x25, 6),
    (0x26, 6),
    (0x27, 6),
    (0x6, 5),
    (0x74, 7),
    (0x75, 7),
    (0x28, 6),
    (0x29, 6),
    (0x2a, 6),
    (0x7, 5),
    (0x2b, 6),
    (0x76, 7),
    (0x2c, 6),
    (0x8, 5),
    (0x9, 5),
    (0x2d, 6),
    (0x77, 7),
    (0x78, 7),
    (0x79, 7),
    (0x7a, 7),
    (0x7b, 7),
    (0x7ffe, 15),
    (0x7fc, 11),
    (0x3ffd, 14),
    (0x1ffd, 13),
    (0xffffffc, 28),
    (0xfffe6, 20),
    (0x3fffd2, 22),
    (0xfffe7, 20),
    (0xfffe8, 20),
    (0x3fffd3, 22),
    (0x3fffd4, 22),
    (0x3fffd5, 22),
    (0x7fffd9, 23),
    (0x3fffd6, 22),
    (0x7fffda, 23),
    (0x7fffdb, 23),
    (0x7fffdc, 23),
    (0x7fffdd, 23),
    (0x7fffde, 23),
    (0xffffeb, 24),
    (0x7fffdf, 23),
    (0xffffec, 24),
    (0xffffed, 24),
    (0x3fffd7, 22),
    (0x7fffe0, 23),
    (0xffffee, 24),
    (0x7fffe1, 23),
    (0x7fffe2, 23),
    (0x7fffe3, 23),
    (0x7fffe4, 23),
    (0x1fffdc, 21),
    (0x3fffd8, 22),
    (0x7fffe5, 23),
    (0x3fffd9, 22),
    (0x7fffe6, 23),
    (0x7fffe7, 23),
    (0xffffef, 24),
    (0x3fffda, 22),
    (0x1fffdd, 21),
    (0xfffe9, 20),
    (0x3fffdb, 22),
    (0x3fffdc, 22),
    (0x7fffe8, 23),
    (0x7fffe9, 23),
    (0x1fffde, 21),
    (0x7fffea, 23),
    (0x3fffdd, 22),
    (0x3fffde, 22),
    (0xfffff0, 24),
    (0x1fffdf, 21),
    (0x3fffdf, 22),
    (0x7fffeb, 23),
    (0x7fffec, 23),
    (0x1fffe0, 21),
    (0x1fffe1, 21),
    (0x3fffe0, 22),
    (0x1fffe2, 21),
    (0x7fffed, 23),
    (0x3fffe1, 22),
    (0x7fffee, 23),
    (0x7fffef, 23),
    (0xfffea, 20),
    (0x3fffe2, 22),
    (0x3fffe3, 22),
    (0x3fffe4, 22),
    (0x7ffff0, 23),
    (0x3fffe5, 22),
    (0x3fffe6, 22),
    (0x7ffff1, 23),
    (0x3ffffe0, 26),
    (0x3ffffe1, 26),
    (0xfffeb, 20),
    (0x7fff1, 19),
    (0x3fffe7, 22),
    (0x7ffff2, 23),
    (0x3fffe8, 22),
    (0x1ffffec, 25),
    (0x3ffffe2, 26),
    (0x3ffffe3, 26),
    (0x3ffffe4, 26),
    (0x7ffffde, 27),
    (0x7ffffdf, 27),
    (0x3ffffe5, 26),
    (0xfffff1, 24),
    (0x1ffffed, 25),
    (0x7fff2, 19),
    (0x1fffe3, 21),
    (0x3ffffe6, 26),
    (0x7ffffe0, 27),
    (0x7ffffe1, 27),
    (0x3ffffe7, 26),
    (0x7ffffe2, 27),
    (0xfffff2, 24),
    (0x1fffe4, 21),
    (0x1fffe5, 21),
    (0x3ffffe8, 26),
    (0x3ffffe9, 26),
    (0xffffffd, 28),
    (0x7ffffe3, 27),
    (0x7ffffe4, 27),
    (0x7ffffe5, 27),
    (0xfffec, 20),
    (0xfffff3, 24),
    (0xfffed, 20),
    (0x1fffe6, 21),
    (0x3fffe9, 22),
    (0x1fffe7, 21),
    (0x1fffe8, 21),
    (0x7ffff3, 23),
    (0x3fffea, 22),
    (0x3fffeb, 22),
    (0x1ffffee, 25),
    (0x1ffffef, 25),
    (0xfffff4, 24),
    (0xfffff5, 24),
    (0x3ffffea, 26),
    (0x7ffff4, 23),
    (0x3ffffeb, 26),
    (0x7ffffe6, 27),
    (0x3ffffec, 26),
    (0x3ffffed, 26),
    (0x7ffffe7, 27),
    (0x7ffffe8, 27),
    (0x7ffffe9, 27),
    (0x7ffffea, 27),
    (0x7ffffeb, 27),
    (0xffffffe, 28),
    (0x7ffffec, 27),
    (0x7ffffed, 27),
    (0x7ffffee, 27),
    (0x7ffffef, 27),
    (0x7fffff0, 27),
    (0x3ffffee, 26),
    (0x3fffffff, 30),
];

#[cfg(test)]
mod tests {
    use super::BitIterator;
    use super::HuffmanDecoder;
    use super::HuffmanDecoderError;

    /// A helper function that converts the given slice containing values `1`
    /// and `0` to a `Vec` of `bool`s, according to the number.
    fn to_expected_bit_result(numbers: &[u8]) -> Vec<bool> {
        numbers.iter().map(|b| -> bool {
            *b == 1
        }).collect()
    }

    #[test]
    fn test_bit_iterator_single_byte() {
        let expected_result = to_expected_bit_result(
            &[0, 0, 0, 0, 1, 0, 1, 0]);

        let mut res: Vec<bool> = Vec::new();
        for b in BitIterator::new(vec![10u8].iter()) {
            res.push(b);
        }

        assert_eq!(res, expected_result);
    }

    #[test]
    fn test_bit_iterator_multiple_bytes() {
        let expected_result = to_expected_bit_result(
            &[0, 0, 0, 0, 1, 0, 1, 0,
              1, 1, 1, 1, 1, 1, 1, 1,
              1, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 0, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0,
              1, 0, 1, 0, 1, 0, 1, 0]);

        let mut res: Vec<bool> = Vec::new();
        for b in BitIterator::new(vec![10u8, 255, 128, 1, 0, 170].iter()) {
            res.push(b);
        }

        assert_eq!(res, expected_result);
    }

    /// Simple tests for the Huffman decoder -- whether it can decode a single
    /// character code represented additionally with only a single byte.
    #[test]
    fn test_huffman_code_single_byte() {
        let mut decoder = HuffmanDecoder::new();
        // (The + (2^n - 1) at the final byte is to add the correct expected
        // padding: 1s)
        {
            // We need to shift it by 3, since we need the top-order bytes to
            // start the code point.
            let hex_buffer = [(0x7 << 3) + 7];
            let expected_result = vec![b'o'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
        {
            let hex_buffer = [0x0 + 7];
            let expected_result = vec![b'0'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
        {
            // The length of the codepoint is 6, so we shift by two
            let hex_buffer = [(0x21 << 2) + 3];
            let expected_result = vec![b'A'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
    }

    /// Tests that the Huffman decoder can decode a single character made of
    /// multiple bytes.
    #[test]
    fn test_huffman_code_single_char_multiple_byte() {
        let mut decoder = HuffmanDecoder::new();
        // (The + (2^n - 1) at the final byte is to add the correct expected
        // padding: 1s)
        {
            let hex_buffer = [255, 160 + 15];
            let expected_result = vec![b'#'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
        {
            let hex_buffer = [255, 200 + 7];
            let expected_result = vec![b'$'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
        {
            let hex_buffer = [255, 255, 255, 240 + 3];
            let expected_result = vec![10];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
    }

    #[test]
    fn test_huffman_code_multiple_chars() {
        let mut decoder = HuffmanDecoder::new();
        {
            let hex_buffer = [254, 1];
            let expected_result = vec![b'!', b'0'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
        {
            let hex_buffer = [(0x14 << 2) | 0x3, 248];
            let expected_result = vec![b' ', b'!'];

            let result = decoder.decode(&hex_buffer).ok().unwrap();

            assert_eq!(result, expected_result);
        }
    }

    /// Tests that if we find the EOS symbol in the stream, we consider it an
    /// error.
    #[test]
    fn test_eos_is_error() {
        let mut decoder = HuffmanDecoder::new();
        {
            // The EOS is an all-ones pattern of length 30
            let hex_buffer = [0xFF, 0xFF, 0xFF, 0xFF];

            let result = decoder.decode(&hex_buffer);

            assert_eq!(HuffmanDecoderError::EOSInString, match result {
                Err(e) => e,
                _ => panic!("Expected error due to EOS symbol in string"),
            });
        }
        {
            // Full EOS after a valid character.
            let hex_buffer = [0x3F, 0xFF, 0xFF, 0xFF, 0xFF];

            let result = decoder.decode(&hex_buffer);

            assert_eq!(HuffmanDecoderError::EOSInString, match result {
                Err(e) => e,
                _ => panic!("Expected error due to EOS symbol in string"),
            });
        }
    }

    /// Tests that when there are 7 or less padding bits, the string is
    /// correctly decoded.
    #[test]
    fn test_short_padding_okay() {
        let mut decoder = HuffmanDecoder::new();
        let hex_buffer = [0x3F];

        let result = decoder.decode(&hex_buffer);

        assert_eq!(b"o".to_vec(), result.ok().unwrap());
    }

    /// Tests that when there are more than 7 padding bits, we get an error.
    #[test]
    fn test_padding_too_long() {
        let mut decoder = HuffmanDecoder::new();
        let hex_buffer = [0x3F, 0xFF];

        let result = decoder.decode(&hex_buffer);

        assert_eq!(HuffmanDecoderError::PaddingTooLarge, match result {
            Err(e) => e,
            _ => panic!("Expected `PaddingTooLarge` error"),
        });
    }

    /// Tests that when there is a certain number of padding bits that deviate
    /// from the most significant bits of the EOS symbol, we get an error.
    #[test]
    fn test_padding_invalid() {
        let mut decoder = HuffmanDecoder::new();
        {
            let hex_buffer = [0x3E];

            let result = decoder.decode(&hex_buffer);

            assert_eq!(HuffmanDecoderError::InvalidPadding, match result {
                Err(e) => e,
                _ => panic!("Expected `InvalidPadding` error"),
            });
        }
        {
            let hex_buffer = [254, 0];

            let result = decoder.decode(&hex_buffer);

            assert_eq!(HuffmanDecoderError::InvalidPadding, match result {
                Err(e) => e,
                _ => panic!("Expected `InvalidPadding` error"),
            });
        }
    }
}